Axiomatic decomposition of a zero-sum game: the penalty shoot-out case

Author:

Rolli Fernando,Fradinho João,Giorgetti Alessandro,Citti Paolo,Arcidiacono Gabriele

Abstract

The game of soccer has offered matter of wide scientific analysis about the effective application of the game theory in real-life. The field observations have often detected divergent behaviors from theoretical predictions. The basic problem comes from the fact that it is difficult to build scientific models reflecting reality as closely as possible. Axiomatic Design offers us a powerful tool of rational decomposition of a real and complex issue into elementary components. Independence Axiom guarantees that game decomposition will define a set of elementary actions logically consistent and free of redundancies. At the same time, Information Axiom can allow to select among alternative strategies, those that they predict the actions with a higher probability rate of success. In this paper, it is suggested the use of the Axiomatic Design methodology in the Collectively Exhaustive and Mutually Exclusive (CEME) mode, as a tool of analysis of the penalty shoot-out in extra time. This methodology allows to define the game strategies for goalkeepers and penalty takers. It will be analyzed both, the case when the opponents' behavior is well known and the situation when the statistics about the opponents are unknown. Axiomatic Design allows the process of decomposition to be simplified, enabling the selection of optimal game strategies. These strategies correspond to Nash’s equilibrium solutions when you already know about your opponents' game behavior. On the contrary, when penalty takers whose behavior is unknown, then it is always possible to define a strategy corresponding to the Bayesian equilibrium game solutions.

Publisher

EDP Sciences

Subject

General Medicine

Reference23 articles.

1. Kuper S., Szymanski S., Soccernomics: Why England Loses, Why Spain, Germany, and Brazil Win, and Why the US, Japan, Australia - and Even Iraq - Are Destined to Become the Kings of the World's Most Popular Sport, Nation Books, (2014);

2. Application of Axiomatic Design for Project-based Learning Methodology

3. Arcidiacono G., Matt D.T., Rauch E., Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals, Journal of Healthcare Engineering, Article number 2309265, (2017);

4. Axiomatic Design Applied to Play Calling in American Football

5. Brown C.A., Decomposition and Prioritization in Engineering Design, Proceedings ICAD2011 (2011);

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity in the Kitchen;Design Engineering and Science;2021

2. Complexity in the Kitchen;MATEC Web of Conferences;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3