Real-time Machine Health Monitoring System using Machine Learning with IoT Technology

Author:

Wong Tzen Ket,Mun Hou Kit,Phang Swee King,Lum Kai Lok,Tan Wei Qiang

Abstract

Machine health monitoring is the main focal point for now as many industries are evolving to industry 4.0. Industry 4.0 is the revolution in industrial that involve the Internet of Things (IoT) and artificial intelligence toward automation and data sharing for production efficiency improvement. The existing established methods for machine health monitoring were not in real-time and there was no real-time correction of data from the load and processing of data on the computer. In tracking machine health efficiency this approach wasn’t very successful. Real-time machine health monitoring can improve overall equipment effectiveness (OEE), reduce electricity consumption, minimize unplanned downtime, and extend machine lifetime. In this research paper, we propose to design a real-time machine health monitoring system using machine learning with IoT technology that can analyze the supply balancing condition on a 3-phase system. This system is built with compact physical hardware and can capture the electrical data from the load then send it to the server. The server will progress data and train the data using machine learning. The system was installed on a blender machine in a factory. In this research, a system which is able to monitor the machine operation and classify the operation stages of the machine was developed. Besides that, the system also capable to monitor the load balancing condition of the machine.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HealthMentor : A Health Monitoring Mobile App Using Advanced Machine Learning Algorithm;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

2. Improvement of Flow Coefficient Estimation with Limited Well Test Data for Real-Time Condition Analytics of Choke Valve;Day 2 Wed, February 28, 2024;2024-02-22

3. Cloud Enabled Predictive Maintenance Tool for Induction Motor;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

4. IoT-Based Decision Support System for Health Monitoring of Induction Motors;Emerging Trends in Wireless Sensor Networks;2022-10-12

5. IoT Based Real-Time Wearable Tachycardia Monitoring System Using Machine Learning;Artificial Intelligence on Medical Data;2022-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3