IoT-Based Decision Support System for Health Monitoring of Induction Motors

Author:

Pravin Renold A.,Venkatalakshmi B.

Abstract

An electrical motor is a common device that is used for a variety of electrical purposes. Because of their wide range of applications, motors that are both reliable and long-lasting are in high demand. Motors are prone to a variety of faults, including rotor bar breaking faults, short turn faults, bearing outrace faults, and so on. Unexpected faults or failures in these motors reduce workplace productivity. The time it takes to resolve the issues reduces the organization’s profit. Bearing failures account for approximately 42% of all faults. Due to continuous operation, the shape of the majority of electrical motors with rolling bearings becomes disproportional. This causes the motor’s elastic limit to be exceeded, as well as fractures, vibrations, and a rise in temperature. A good solution is to switch from scheduled maintenance to predictive maintenance, which is based on monitoring the motor’s operating condition. This chapter proposes an Internet of Things (IoT)-based solution that continuously monitors and records the vibration from the induction motor. A decision support system analyzes the impact of vibration using log data and the Naïve Bayes classifier. The proposed decision support system detects the critical level of vibration and notifies the user of the motor’s abnormal working condition.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud Enabled Predictive Maintenance Tool for Induction Motor;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3