Author:
Moumi Eric,Wilhelmi Philipp,Schenck Christian,Herrmann Marius,Kuhfuss Bernd
Abstract
In rotary swaging, the material flow is not fully controlled by closure of the forming dies. This is especially noticeable in plunge rotary swaging of rod, where the workpiece is positioned into the forming zone und processed locally. As result, an uncontrolled elongation of the workpiece in axial direction takes place and an axial position shift of the workpiece relative to the dies occurs. This is a special challenge in production of linked micro parts, where single parts are interconnected in order to enable the handling as a strip and thereby a roll-to-roll production. The axial shift influences not only the subsequent positioning of neighbouring parts, but also the final geometry of the currently processed part. The presented investigation analyses the material flow during plunge micro rotary swaging on basis of in-process measurements of the workpiece shift on both sides of the forming zone as well as with the help of contour measurements of the processed parts. It is shown that the measured shift is strongly influenced by the workpiece clamping and fixation and that it can be controlled by applying low axial forces to the workpiece on one or both sides of the forming zone. Further, the geometry of the workpiece can be affected by these measures.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献