Study of fatigue crack initiation location of wheel and rail under rolling contact using finite element method

Author:

Jaifu Apichai,Raeon Suthep,Pimsarn Monsak

Abstract

The rail transit system is widely used for freight and passenger transportation. Due to the fact that its economic worthiness and high safety mode. Maintenance and damage prevention of wheel and rail are important factors affecting the safety of the system. The previous studies show that the most damage of wheel and rail is fatigue cracking, which is caused by the contact stress resulting from wheel and rail interaction. This article presents the study of the fatigue crack initiation location of wheel and rail under rolling contact at the wheel speed of 80 km/h using Finite Element Method (FEM). The three dimensional finite element models were created using the UIC60E1 wheel profile and BS100 rail profile. The Dang Van criteria was applied to analyse the fatigue crack initiation location in case of the wheel's position was changed along the rail lateral direction while the rail inclination angle was also varied at 0, 1/40, 1/30 and 1/20, respectively. The analysing results show that the fatigue crack initiation, determined by the Dang Van stress ratio, tends to increase when the wheel is moved from gauge side to field side. Additionally, the fatigue crack damage is likely to decrease when the rail inclination increases up to the inclination of 1/30 and the fatigue crack initiation locations were found underneath the wheel and rail surfaces. The obtained result can be a primary guideline for maintenance planning.

Publisher

EDP Sciences

Subject

General Medicine

Reference9 articles.

1. Reaon S., Pimsarn M., Thailand Rail Academic Symposium (TRAS2016)

2. wu Y., Wei Y., Liu Y., Duan Z., Wang L., Applied Thermal Engineering, 115 (2017)

3. Finite element analysis of the frictional wheel-rail rolling contact using explicit and implicit methods

4. Vollebregt E.A.H., User Guide for CONTACT, Vollebregt & Kaller’s Rolling cantact and sliding Contact model, 2013

5. Multi-scale finite element modeling to describe rolling contact fatigue in a wheel–rail test rig

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3