Abstract
The radial transport of angular momentum in accretion disk is a fundamental process in the universe. It governs the dynamical evolution of accretion disks and has implications for various issues ranging from the formation of planets to the growth of supermassive black holes. While the importance of magnetic fields for this problem has long been demonstrated, the existence of a source of transport solely hydrodynamical in nature has proven more difficult to establish and to quantify. In recent years, a combination of results coming from experiments, theoretical work and numerical simulations has dramatically improved our understanding of hydrodynamically mediated angular momentum transport in accretion disk. Here, based on these recent developments, we review the hydrodynamical processes that might contribute to transporting angular momentum radially in accretion disks and highlight the many questions that are still to be answered.
Subject
General Engineering,Astronomy and Astrophysics,Space and Planetary Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献