Inviscid protostellar disc ring formation and high-density ring edges due to the ejection and subsequent infall of material onto a protostellar disc

Author:

Liffman KurtORCID

Abstract

Abstract Discs of gas and dust are ubiquitous around protostars. Hypothetical viscous interactions within the disc are thought to cause the gas and dust to accrete onto the star. Turbulence within the disc is theorised to be the source of this disc viscosity. However, observed protostellar disc turbulence often appears to be small and not always conducive to disc accretion. In addition, theories for disc and planet evolution have difficulty in explaining the observed disc rings/gaps which form much earlier than expected. Protostellar accretion discs are observed to contain significant quantities of dust and pebbles. Observations also show that some of this material is ejected from near the protostar, where it travels to the outer regions of the disc. Such solid infalling material has a relatively small amount of angular momentum compared to the material in the disc. This infalling material lowers the angular momentum of the disc and should drive a radial flow towards the protostar. We show that the local radial accretion speed of the disc is proportional to the mass rate of infalling material onto the disc. Higher rates of infall onto the disc implies higher radial accretion disc speeds. As such, regions with high rates of infall of gas, dust, and pebbles onto the disc will produce gaps on relatively short timescales in the disc, while regions associated with relative low rates of infalling material will produce disc rings. As such, the inner edge of a disc gap will tend to have a higher surface density, which may enhance the probability of planet formation. In addition, the outer edge of a disc gap will act as a dust trap and may also become a site for planet formation. For the early Solar System, such a process may have collected O $^{16}$ -poor forsterite dust from the inner regions of the protosolar disc and O $^{16}$ -rich CAIs and AOAs from the inner edge regions of the protosolar disc, thereby constructing a region favourable to the formation of pre-chondritic planetesimals.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3