Diagnostic performance of whole-genome sequencing for identifying drug-resistant TB in Thailand

Author:

Kamolwat P.1,Nonghanphithak D.2,Chaiprasert A.3,Smithtikarn S.1,Pungrassami P.1,Faksri K.2

Affiliation:

1. Division of Tuberculosis, Department of Disease Control, Ministry of Public Health, Khon Kaen University, Khon Kaen, Thailand

2. Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand

3. Drug Resistant Tuberculosis Research Fund Laboratory, Research and Development Affairs, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Abstract

BACKGROUND: Whole-genome sequencing (WGS) is a promising tool for the detection of drug-resistant TB (DR-TB). To date, there have been few comparisons of diagnostic performance of WGS and phenotypic drug susceptibility testing (DST) in DR-TB.METHODS: We compared drug resistance-conferring mutations identified by WGS analysis using TB-Profiler and Mykrobe with phenotypic DST profiles based on the Löwenstein-Jensen proportion method using drug-resistant Mycobacterium tuberculosis (n = 537) isolates from across Thailand. Based on available phenotypic DST results, diagnostic performance was analysed for resistance against isoniazid, rifampicin, ethambutol (EMB), streptomycin, ethionamide (ETH), kanamycin, capreomycin (CPM), para-aminosalicylic acid, ofloxacin and levofloxacin.RESULTS: High agreement between the two methods was observed for most drugs (>91%), except EMB (57%, 95% CI 53–61) and ETH (70%, 95% CI 66–74). Also, low specificity was observed for EMB (49%, 95% CI 44–54) and ETH (66%, 95% CI 61–71). Sensitivity was high for most drugs (range 83–98%), except CPM (77%, 95% CI 59–88).CONCLUSION: Low agreement between WGS and phenotypic tests for drug resistance was found for EMB and ETH. The current genomic database is insufficient for the identification of CPM resistance. Challenges remain for routine usage of WGS-based DST, especially for second-line anti-TB drugs.

Publisher

International Union Against Tuberculosis and Lung Disease

Subject

Infectious Diseases,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3