Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China

Author:

Zhang Mingwu1,Lu Yewei2,Zhu Yelei1,Wu Kunyang1,Chen Songhua1,Zhou Lin1,Wang Fei1,Peng Ying1,Li Xiangchen2,Pan Junhang1,Chen Bin1ORCID,Liu Zhengwei1,Wang Xiaomeng1

Affiliation:

1. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China

2. Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310020, China

Abstract

Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). Whole-genome sequencing (WGS) holds great promise as an advanced technology for accurately predicting anti-TB drug resistance. The development of a reliable method for detecting drug resistance is crucial in order to standardize anti-TB treatments, enhance patient prognosis, and effectively reduce the risk of transmission. In this study, our primary objective was to explore and determine the potential of WGS for assessing drug resistance based on genetic variants recommended by the World Health Organization (WHO). A total of 1105 MTB strains were selected from samples collected from 2014–2018 in Zhejiang Province, China. Phenotypic drug sensitivity tests (DST) of the anti-TB drugs were conducted for isoniazid (INH), rifampicin (RFP), streptomycin, ethambutol, fluoroquinolones (levofloxacin and moxifloxacin), amikacin, kanamycin, and capreomycin, and the drug-resistance rates were calculated. The clean WGS data of the 1105 strains were acquired and analyzed. The predictive performance of WGS was evaluated by the comparison between genotypic and phenotypic DST results. For all anti-TB drugs, WGS achieved good specificity values (>90%). The sensitivity values for INH and RFP were 91.78% and 82.26%, respectively; however, they were ≤60% for other drugs. The positive predictive values for anti-TB drugs were >80%, except for ethambutol and moxifloxacin, and the negative predictive values were >90% for all drugs. In light of the findings from our study, we draw the conclusion that WGS is a valuable tool for identifying genome-wide variants. Leveraging the genetic variants recommended by the WHO, WGS proves to be effective in detecting resistance to RFP and INH, enabling the identification of multi-drug resistant TB patients. However, it is evident that the genetic variants recommended for predicting resistance to other anti-TB drugs require further optimization and improvement.

Funder

Zhejiang Provincial Basic Public Welfare Research Program Project of China

Medical and Health Research Project of Zhejiang Province

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3