Mathematical Model of the Dynamics of Spherical Elements

Author:

Pasternak Viktoriya1,Ruban Artem2ORCID,Holii Oleksandr3,Vavreniuk Sergii4

Affiliation:

1. Lesya Ukrainka Volyn National University

2. Lviv State University of Life Safety

3. National Academy of Agrarian Sciences of Ukraine

4. National University of Civil Defence of Ukraine

Abstract

This paper presents a study in the field of modelling the dynamics of spherical elements. The results obtained indicate the successful use of the discrete element method (DEM) as a numerical tool for analysing the behaviour of the system studied with the help of spheres. The results are based on the importance of correct consideration of the boundary conditions for the spheres, which determine the key aspects of modelling with the developed three-dimensional model. The developed model solves a number of important tasks, expanding the field of scientific research. Firstly, it allows studying the main parameters of the formation of a heterogeneous medium by analysing the compaction of spherical elements in different media. Next, the three-dimensional model is used to study the process of changing the structure of a heterogeneous medium from a static to an oscillatory state, which allows for a deeper understanding of this process. By modelling the mathematical behaviour of spherical elements under the influence of external and additional factors, a detailed understanding of their dynamics and contact interaction can be obtained. The application of the developed model to analyse the contact interaction of spherical elements in heterogeneous media allows predicting the main parameters of spheres and their heterogeneous environment with a reliable accuracy of up to ±1 %. It should be noted that the results obtained on the basis of the three-dimensional model are effective and indicate a number of practical applications in various fields.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3