Control of Welding Residual Stress in Large Storage Tank by Finite Element Method

Author:

Wu GangORCID,Luo Jinheng,Li Lifeng,Long Yan,Zhang Shuxin,Wang Yujie,Zhang Yao,Xie Shuyi

Abstract

T-joint welding is a key manufacturing process of large storage tanks. However, complex residual stresses are generated and have a great effect on the structural integrity of storage tanks. The high residual stress caused by welding and the discontinuous structure may result in tank cracking and failure. In this work, the residual stress distributions on the inner surface, outer surface, and thickness direction of the T-joint were investigated by using the finite element method and indentation test method. The effect of local PWHT with different heating temperatures, heating rates, and heating widths on the residual stress distribution was also discussed. Results show that the residual stress of the T-shaped joint is high due to the serious structure discontinuity, multi-layer welding, and high strength. Among all the stresses, the circumferential residual stress is the highest and most concentrated in the outer weld connected with the annular plate. The residual stress gradually decreases with the increase in the heat treatment temperature. When the heating rate is less than 106 °C/h, the residual stress gradually decreases with the decrease in the heating rate. The large thermal deformation caused by heat treatment can be simultaneously avoided by heating the inside and outside of the T-joint. The residual stress decreases with the decrease in the width of the heating zone. The residual stress can be regulated by using a smaller width in the heating zone. An optimized heat treatment scheme with a heating temperature of 700 °C, heating rate of 56 °C/h, and heating width of 200 mm was proposed, which has a good ability to control residual stresses and improve the quality of the T-joint. It also has a good application in engineering.

Funder

CNPC Research and Technology Development Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3