Effect of Bias Voltage on Adhesion and Corrosion Resistance of Titanium Nitride Coated Stainless Steel Substrate

Author:

Faizi Talha1,Khan Abdullah1,Ali Rashid1

Affiliation:

1. Ghulam Ishaq Khan Institute of Engineering Sciences and Technology

Abstract

In this work, the adhesion and corrosion resistance of TiN coating by magnetron sputtering on stainless steel substrates under different bias voltages conditions (-50 V and-100 V) was investigated. AFM was used for surface roughness and grain size analysis, XRD for phase identification, Rockwell C for adhesion and nanoindentation for hardness and elastic modulus. According to AFM the coating deposited at-100V bias had decreased surface roughness, the value decreased from 2.7 nm (for-50V sample) to 1.8 nm, this was due to an etching like process which occurs when ions with higher energies start hitting the surface. The coated samples came under HF1 adhesion parameter which is the highest class of adhesion in the model on the basis of Rockwell C adhesion test. nanoindentation hardness and elastic modulus results of-50 V and-100V were found to be 224 GPa and 182 GPa, respectively and the value of hardness, 16 GPa and 22 GPa, respectively. The corrosion behavior of TiN coatings were studied in 3.5wt. % NaCl solutions using Tafel Extrapolation, Cyclic Polarization and Open Circuit Potential. It was noted on the basis of these corrosion tests that, as bias voltage is increased, it leads to the formation of more densely packed, fine grained columnar structures with less pores, which decreases the chances of corrosion. .

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3