Development of Ni-Mn-Ga Enabled Micropumps for Hybrid Microdevices in Microelectromechanical Systems

Author:

Hu Hao1ORCID,Jiang Hui Huang2,Guo Dong Hui2,Ullakko Kari1

Affiliation:

1. Lappeenranta-Lahti University of Technology

2. Xiamen University

Abstract

This study selects a single crystalline Ni-Mn-Ga alloy by its exceptional actuator attributes, high actuation speed, precise position control, rapid response to external magnetic fields, and extended operational lifespan. Researchers venture into uncharted territory, aiming to harness the potential of Ni-Mn-Ga alloy to revolutionize micropump performance and refine fluid manipulation within miniature devices. The methodology at the heart of this endeavor involves the seamless integration of this specialized alloy with microdevice technology, giving rise to a set of unique pump components that substantially boost pump efficiency. Crucially, Ni-Mn-Ga is the chosen material for the active part of the micropump. At the same time, MEMS fabrication handles the passive elements, all facilitated by the 0.18 µm semiconductor technology and Sivalco TCAD simulation software. Computational simulations validate the alloy's suitability, impressively achieving an accumulated flow volume of 0.15 x 10e-4 µL in 10 microseconds. Beyond its scientific significance, this research bridges MEMS technology and magnetic-enabled smart materials, showcasing the remarkable capabilities of Ni-Mn-Ga alloy in significantly enhancing micropump performance. These innovative solutions promise to open doors to groundbreaking applications in microfluidic systems across many scientific and industrial domains.

Publisher

Trans Tech Publications, Ltd.

Reference29 articles.

1. V. Lindroos, M. Tilli, A. Lehto, T. Motooka, Handbook of Silicon Based MEMS Materials and Technologies. Oxford, UK: William Andrew, Elsevier Inc. ISBN: 978-0-8155-1594-4, (2010).

2. T.M. Adams, R.A. Layton, Advanced MEMS/NEMS fabrication and sensors. Switzerland: Springer Nature Switzerland AG. ISBN: 978-3-030-79749-2, (2022).

3. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor;Dennis;Sensors,2015

4. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration;Duque;Sensors,2019

5. J. Slaughter, M. Dapino, R. Smith, A. Flatau, Modeling of a Terfenol-D ultrasonic transducer, In: Smart Structures and Materials 2000: Smart Structures and Integrated Systems, (2000), 3985, 366-377.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3