Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration

Author:

Duque MarcosORCID,Leon-Salguero Edgardo,Sacristán Jordi,Esteve Jaume,Murillo Gonzalo

Abstract

The increasing interest in the Internet of Things (IoT) has led to the rapid development of low-power sensors and wireless networks. However, there are still several barriers that make a global deployment of the IoT difficult. One of these issues is the energy dependence, normally limited by the capacitance of the batteries. A promising solution to provide energy autonomy to the IoT nodes is to harvest residual energy from ambient sources, such as motion, vibrations, light, or heat. Mechanical energy can be converted into electrical energy by using piezoelectric transducers. The piezoelectric generators provide an alternating electrical signal that must be rectified and, therefore, needs a power management circuit to adapt the output to the operating voltage of the IoT devices. The bonding and packaging of the different components constitute a large part of the cost of the manufacturing process of microelectromechanical systems (MEMS) and integrated circuits. This could be reduced by using a monolithic integration of the generator together with the circuitry in a single chip. In this work, we report the optimization, fabrication, and characterization of a vibration-driven piezoelectric MEMS energy harvester, and the design and simulation of a charge-pump converter based on a standard complementary metal–oxide–semiconductor (CMOS) technology. Finally, we propose combining MEMS and CMOS technologies to obtain a fully integrated system that includes the piezoelectric generator device and the charge-pump converter circuit without the need of external components. This solution opens new doors to the development of low-cost autonomous smart dust devices.

Funder

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Energy Harvesting in Internet of Things;Yau,2018

2. Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN

3. Energy harvesting, Wireless sensor networks & opportunities for industrial applicationshttps://www.eetimes.com/document.asp?doc_id=1279440

4. Self-Powered System with Wireless Data Transmission

5. Energy harvesting: State-of-the-art

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3