Design and Fabrication of Injection Molds to Manufacture Double Channel Laryngoscope for Effective Airway Management: Taguchi Method for Surface Roughness Optimization

Author:

Shetty Balachander1,Reddy J. Sudheer1,Lakshmikanthan Avinash1,Manjunath Patel G.C.2,Malik Vinayak R.3ORCID

Affiliation:

1. Nitte Meenakshi Institute of Technology

2. PES Institute of Technology and Management

3. KLS Gogte Institute of Technology

Abstract

The present work focuses on the mold design and production of the multifunctional device laryngoscope with surface quality through the injection molding process. A laryngoscope is a device used by anesthesiologists to lift the tongue that facilitates to fix the air pipe in the larynx. Demand still exists in the laryngoscope part to assist anesthesiologists to take care of the airway without causing chest compression and ensure visualization of vocal cords. Therefore, the present work aims at developing a laryngoscope with a double channeled device, wherein one for aligning the camera and another for the air pipe. The paper outlines the design parameters required for manufacturing a single cavity mold to produce a laryngoscope viz. injection molding machine. The mold has multiple plates with complex fluid channels which ensures effective thermal management in-mold system. The mold is manufactured using high-strength tool steel materials and the product laryngoscope (ABS: Acrylonitrile butadiene styrene) is fabricated from the designed mold. Taguchi L9 experimental array was used to determine the optimal conditions (injection pressure, injection velocity, mold and melt temperature) for desired surface finish in the laryngoscope parts. The designed mold and optimized injection molding conditions resulted in a lower surface roughness value equal to 0.214 µm. Thereby, injection-molded laryngoscope parts can be used for large-scale productions for the benefit of medical applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of a 4-axis cartesian robot for unloading plastic injection machines in industrial applications;Journal of Mechatronics and Artificial Intelligence in Engineering;2023-11-13

2. Modelling and optimization of selective laser melting parameters using Taguchi and super ranking concept approaches;International Journal on Interactive Design and Manufacturing (IJIDeM);2022-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3