Oxide and Interface Defect Analysis of lateral 4H-SiC MOSFETs through CV Characterization and TCAD Simulations

Author:

Vasilev Aleksandr1,Feil Maximilian Wolfgang2ORCID,Schleich Christian1,Stampfer Bernhard1ORCID,Rzepa Gerhard3,Pobegen Gregor4,Grasser Tibor2,Waltl Michael1

Affiliation:

1. TU Wien

2. TU Vienna

3. Global TCAD Solutions GmbH

4. KAI GmbH

Abstract

We investigated oxide and interface defects of lateral 4H-SiC MOSFETs through capacitance-voltage (C-V) and conductance-voltage (G-V) characterization at various frequencies and temperatures. By employing consecutive up and down sweeps of the gate voltage at three different temperatures, we experimentally characterized the hysteresis width as the difference between up and down sweeps in the depletion to accumulation (d-a) and depletion to inversion (d-i) regions. We observed an increase in the hysteresis width with decreasing temperature. Although the hysteresis width is not affected by the small-signal frequency, at the same time, increasing the frequency leads to a strong stretch-out effect, especially in the d-i region.Our measurement results indicate that the hysteresis deformation of the C-V curves is dominated by three different trap types. First, interface acceptor-like defects located close to the conduction band can follow the small-signal frequency. Slower acceptor-like border traps with trap levels both close to the conduction band and in the middle of the band gap are however responsible for the increase of trapped negative charge with increasing gate voltage. Finally, we assume the presence of a fixed positive charge.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3