A Rapid Synthesis of Zeolitic Imidazolate Framework-14 Cobalt (ZIF-14 Co) for Surface Modification of LiFePO<sub>4</sub> as Lithium‑Ion Battery Cathode Material

Author:

Edwin Rudiawan1,Eddy Diana Rakhmawaty1,Rahayu Iman1

Affiliation:

1. Padjadjaran University

Abstract

The main limitation of LiFePO4 (LFP) as a cathode material for lithium-ion battery (LIB) is its poor rate performance due to its low electronic conductivity values. At present, there are three main efforts being intensively carried out to overcome this: cation doping, crystal morphology adjustment, and LFP surface modification. Surface modification of LFPs has become a major concern in efforts to improve battery performance. The use of zeolitic imidazolate frameworks 8 (ZIF-8) and 67 (ZIF 67) as N-doped C sources for surface modification of LIB cathodes carried out in several studies has shown an improvement in the electrochemical performance of LIB. However, the thermal, solvothermal and chemical stability of ZIF-8 and ZIF-67, which adopt the sodalite (SOD) topology, is still not enough for this purpose. Zeolitic imidazolate frameworks 14 (ZIF-14), which is homologous to ZIF-8 and ZIF-67 with its crystals adopting analcime (ANA) topology, has better thermal, solvothermal, and chemical stability than ZIF-8 and ZIF-67. Apart from its topology, ZIF-14 cobalt (ZIF-14 Co) can be synthesized rapidly in a water-based system at room temperature, so that its use becomes more effective and efficient. This paper will describe the synthesis and characterization procedure of ZIF-14 Co for use as a modification material for the cathode surface of LIB.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3