Review—Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance

Author:

Kaur GurbinderORCID,Gates Byron D.ORCID

Abstract

Lithium ion batteries (LIBs) have dominated the energy industry due to their unmatchable properties that include a high energy density, a compact design, and an ability to meet a number of required performance characteristics in comparison to other rechargeable systems. Both government agencies and industries are performing intensive research on Li-ion batteries for building an energy-sustainable economy. LIBs are single entities that consist of both organic and inorganic materials with features covering multiple length scales. Two vital parameters for LIBs are their stable and safe operation. Critical insights should be made for understanding the structure to property relationships and the behavior of components under the working condition of LIBs. Since, the cathode serves as a central component of LIBs, the overall cell performance is significantly affected by the chemical and physical properties of the cathode. Cathodes tend to react with the electrolytes and, hence, to undergo surface modifications accompanied by degradation. These side-reactions result in an erosion of battery performance, thereby causing a reduced battery life and power capacity. Recently, techniques for preparing surface coatings on cathode materials have been widely implemented as a measure to improve their stability, to enhance their electrochemical performance, and to prevent detrimental surface reactions between the electrode materials and electrolyte. This review will cover different types of surface coatings for cathode materials, as well as a comparison of the changes in electrochemical performance between those materials with and without an applied coating. In addition, a brief outlook is included for different cathode materials and their coatings.

Funder

American Physical Society

CMC Microsystems

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3