A Novel Contactless SiC Wafer Planarization Processing after Mechanical Slicing by Dynamic Thermal Annealing Processes

Author:

Toda Kohei1,Kakutani Daichi1,Dojima Daichi1,Nakajima Yuta2,Mihara Hiroshi2,Kaneko Tadaaki1

Affiliation:

1. Kwansei Gakuin University

2. QureDA Research, Inc.

Abstract

In conventional machining of SiC wafers, material loss and sub-surface damage (SSD) of both the front and back surfaces are major issues. In this study, we focused on Dynamic AGE-ing® (DA), which is a sublimation-controlled process, and applied it to the total wafering process without any mechanical contact of both the front and back surfaces to explore the possibilities to reach the CMP-equivalent quality. DA process enables material lossless planarization of SiC wafers by applying a temperature gradient to achieve simultaneous etching and growth at the same rate on one and the other surfaces, respectively. To drive the planarization function for a multi-wire saw finished as-sliced wafer, as an example, a high-temperature regime above 2000 °C under an Ar background pressure higher than 1 kPa to suppress etching and growth rates was employed as the first step in the DA treatment. In this step, an effective annealing function arises where sublimation and recrystallization occur simultaneously through a sub-surface region on both sides of the wafer. Due to the active interchange of the surface and subsurface layer, a self-organizing planarization effect occurs on a macroscopic scale on both surfaces with the removal of SSD. The conventional DA processes were employed for the following microscopic flatness control. As a result, the roughness of the 6-inch as-sliced wafer was reduced to 0.7 nm on the Si-face and 2.0 nm on the C-face while maintaining the wafer thickness. This is the first promising result exhibiting the potential of thermal contactless treatment for next-generation wafer manufacturing by improving quality and cost.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3