Tribocorrosion Behavior of Ti6Al4V Machined and Burnished Components for Biomedical Application

Author:

Rotella Giovanna1ORCID,Saffioti Maria Rosaria2,Sanguedolce Michela2,Umbrello Domenico2,Filice Luigino2

Affiliation:

1. University of Salento

2. University of Calabria

Abstract

Nowadays, the increased average age of patients and the decreased age at which arthroplasty is carried out represents a reason for the necessity of higher quality standards for prostheses. In particular, tribocorrosion generates an irreversible transformation of the materials and the release of particles and metal ions in toxic concentrations in the biological environment in which the systems are implanted. One of the most used materials for prosthetic implants is the Ti6Al4V alloy but its tribological behavior is still challenging for the application. Employing and optimizing severe plastic deformation processes represents a way to obtain prostheses with superior performance improving patients’ quality of life and reducing the burden on National Health Cares. Ti6Al4V bars have undergone machining with semi-finishing parameters and burnishing processes. Tribocorrosion tests have been performed in a custom-made cylinder-on-disk configuration employing Al2O3 counterparts and phosphate buffer solution with the addition of albumin as simulated body fluid. The effects of sole machining and its combination with burnishing on surface quality and specific wear rate (SWR) have been assessed with respect to as received surface conditions. Optical microscopy, stylus profilometry and sample weighing before tests and at specific intervals during the tests have been employed for characterization. As a main result, it has been found that burnishing process is able to improve SWR of Ti6Al4V samples with respect to both as received and machined samples. Furthermore, the overall behavior of tribological system is gradually improved first employing sole machining and then combining machining and burnishing, reducing SWR of counterparts as well.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3