Study of Strained-SiGe Channel P-MOSFET Using Silvaco TCAD: Impact of Channel Thickness

Author:

Mohd Salleh Siti NorFarah Nadia1,Abd Rahim Alhan Farhanah1,Mohd Razali Nurul Syuhadah1,Radzali Rosfariza1,Mahmood Ainorkhilah1,Hamzah Irni Hamiza1

Affiliation:

1. Universiti Teknologi MARA

Abstract

Compressively strained SiGe is an interesting channel material for sub 45 nm p-MOSFETs because of its superior hole mobility (up to 10x over bulk Si channels) and compatibility with current Si manufacturing technologies. In this work, the impact of heterostructure composition and SiGe channel thickness on the electrical characteristics of p-MOSFET are studied. Using strained Si0.8Ge0.2 p-MOSFET, the thickness was altered to a few thicknesses of 3 nm, 5 nm, 7 nm, and 9 nm respectively. The optimal thickness was then used for Ge compositions (x = 0.2). The project was realized utilizing computer-aided Silvaco TCAD tools, with ATHENA tools creating the p-MOSFET structure and ATLAS tools doing the device simulation. The strained-Si1-xGex p-MOSFET and the Si p-MOSFET were compared in terms of their performances. The ID-VG and ID-VD characteristics, as well as the threshold voltage, VTH extraction, were the focus of the device simulation. The 7 nm thickness strained-Si0.8Ge0.2 p-MOSFET exhibited lower VTH than other SiGe thicknesses and the Si p-MOSFET which is VTH = 0.074 V. The lower threshold voltage of the strained-Si0.8Ge0.2 with 7 nm thickness indicating that the strained-Si1-xGex contributed to the decreased power consumption. In addition, the extracted IDsat for the strained-Si0.8Ge0.2 p-MOSFET with 7nm thickness provided higher IDsat compared to conventional Si p-MOSFET and other SiGe thicknesses devices. As compared to Si p-MOSFETs, the output characteristics of the strained-Si1-xGex demonstrated a drain current improvement by a factor of 1.01.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3