Enhanced Catalytic Palladium Embedded Inside Porous Silicon for Improved Hydrogen Gas Sensing

Author:

Abd Rahim Alhan Farhanah,Mohd Razali Nurul Syuhadah,Radzali Rosfariza,Mahmood Ainokhilah,Hamzah Irni Hamiza,Packeer Mohamed Mohamed Fauzi

Abstract

In this work, we reported on room temperature porous silicon (PS) and embedding PS using simple and economical techniques of electrochemical etching and thermal evaporation. The PS substrate was prepared using the technique of electrochemically etching the n-type Si (100) wafer at a constant current density of 10 mA/cm2 for 10 min under the illumination of incandescent white light. After PS formation, Ge pieces were thermally evaporated onto the two PS substrates in a vacuum condition. This was then followed by the deposition of the ZnO layer onto the Ge/PS substrate by the same method using commercial 99.9% pure ZnO powders. The three samples were identified as PS, Ge/PS and ZnO/Ge/PS samples, respectively. Pd finger contacts were deposited on the PS and embedding PS (Ge/PS and ZnO/Ge/PS) to form Pd on PS hydrogen sensors using RF magnetron sputtering. SEM and EDX suggested the presence of substantial Ge and ZnO inside the uniform circular pores for Ge/PS and ZnO/Ge/PS samples, respectively. Raman spectra showed that good crystalline Ge and ZnO nanostructures embedded inside the pores were obtained. For hydrogen sensing, Pd on ZnO/Ge/PS Schottky diode exhibited a dramatic change of current after exposure to H2 as compared to PS and Ge/PS devices. It is observed that the sensitivity increased exponentially with the hydrogen flow rate for all the sensors. The ZnO/Ge/PS showed more sensitivity towards H2 than that of PS and Ge/PS especially at high flow rate of H2 with higher current gain (69.11) and shorter response (180 s) and recovery times (30 s).

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3