Abstract
This study offers a comprehensive examination of the behavior of 3C-SiC crystals grown on 4° off-axis (100) Si substrates with different off-axis angles along <110> and <100> for N and Al doping, respectively. The investigation takes advantage of molten KOH etching to conduct an in-depth investigation of the average density and size of the SFs inside the crystal for both n- and p-type doped 3C-SiC epitaxial layers. Moreover, 3C-SiC grown on a <100> off-cut substrate was revealed to have a greater concentration of SFs due to the absence of self-annihilation along the plane (-1-10). Considering two different doping ranges suitable for IGBTs and MOSFETs development, the impact of doping and off-angle on the crystal quality, concentration, and length distribution of SFs was then investigated in order to quantify the influence of N and Al incorporation on the structural and optical characteristics of the semiconductor. It turned out that under heavy nitrogen doping (~1019 cm-3), when the dopant concentration grew, the average length of the stacking faults (SFs) expanded while their density dropped.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science