Statical Numerical Analysis and Material Optimization of Arthropod-Inspired Hexapod Robots for Disaster Rescue Applications

Author:

Cruz-López Salvador1ORCID,Urriolagoitia-Calderón Guillermo Manuel1,Romero-Ángeles Beatriz1,Urriolagoitia-Sosa Guillermo1,Marquet-Rivera Rodrigo Arturo1,Hernández-Vázquez Rosa Alicia2,Mastache-Miranda Octavio Alejandro1

Affiliation:

1. Instituto Politécnico Nacional

2. Universidad Politécnica del Valle de México

Abstract

The development of arthropod-inspired robotic architecture, modeled after the limbs of insects and other animals, has enabled robots to behave more flexibly and adaptively in different environments. Among these designs, hexapod robots have gained significant attention due to their potential use in disaster rescue scenarios, providing vital support for lifesaving and damage control in emergency situations. This study addresses the numerical analysis of a hexapod robot specifically tailored for use in disaster areas, with a particular focus on the crucial aspect of material optimization. Hexapod robots, equipped with articulated legs that mimic insect-like movements, have shown remarkable success in exploration tasks, especially in navigating hard-to-reach places. The main body of the robot was designed using durable yet lightweight materials to optimize load-bearing capacity for the required equipment and rescue tools. A thorough static numerical analysis was performed to ensure the structural integrity and efficiency of the robot. Finite element simulation programs were used for the static numerical analysis, allowing evaluation of the stresses and deformations to which the robot would be subjected under various loading conditions. The selection of materials played a critical role in improving the robot's performance and survivability during disaster operations. Various materials, including composites and advanced alloys, were tested, and analyzed for their mechanical properties and suitability for harsh conditions. In particular, the resistance of the robot to the impact of a falling cubic reinforced concrete element was investigated by simulating a stone collapse. The results of this study shed light on the influence of materials on the robot's ability to cope with unpredictable and challenging scenarios, ultimately contributing to the development of more robust and reliable Hexapod robots for disaster operations. The results of this research contribute significantly to ongoing advances in robotics technology for disaster operations. By leveraging the unique characteristics of arthropod-inspired Hexapod robots and optimizing their material composition, this study highlights the potential of these mobile devices to revolutionize rescue operations in challenging and hazardous environments, ultimately saving lives and minimizing the impact of disasters.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3