Producing Ceria (CeO<sub>2</sub>) Nanoparticles Using Ethanol/Water Mixture as Solvent: Effect of Temperature on the Morphology and Crystallite Size

Author:

Rusdi Suharno1,Chafidz Mas Sahid Achmad2,Nurkhamidah Siti2,Fardhyanti Dewi Selvia3ORCID,Handayani Prima Astuti3,Prasetiawan Haniif3

Affiliation:

1. Universitas Islam Indonesia

2. Institut Teknologi Sepuluh Nopember

3. Universitas Negeri Semarang

Abstract

Cerium oxide has been widely used in many application. One of the most important applications is for chemical mechanical application/planarization (CMP). In the current work, ceria nanoparticles have been prepared via precipitation method using ethanol/water mixture as the solvent, while cerium nitrate hexahydrate as cerium source and ammonium solution as precipitant. The effects of two different temperatures (i.e. 30 and 50°C) and two different apparatus setup (i.e. Setup A and Setup B) on the morphology and crystallite size of the ceria nanoparticles were studied. The morphology and crystallite size of the ceria were analyzed using X-Ray Diffractometer (XRD) and Tranmission Electron Microscopy (TEM). The XRD analysis results showed that the peak intensity of the ceria nanoparticles prepared by using setup B was much higher than the ones prepared by using Setup A. The XRD results revealed that the crystallinity growth and mean crystallite size of the ceria was better or higher when using Setup B. The crystallite size of the calcined ceria nanoparticles were found to be 9.8; 10.5; 14.5 nm for Ceria-1, Ceria-2, and Ceria-3 samples, respectively. In addition, the TEM images showed that Ceria-3 sample exhibited better morphology and less agglomerated compared to that of Ceria-1 and Ceria-2 samples. Futhermore, Ceria-3 sample also had better dispersion stability compared to that of Ceria-1 and Ceria-2 samples due to its better morphology.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3