Reliability Test of Inkjet-Printable Silver Conductive Ink

Author:

Abd Aziz Aiman Sajidah1,Rejal Siti Zuulaika1,Rashid Nora'zah Abdul1,Sulaiman Suraya1,Syed Mohd Jaafar Syed Muhammad Hafiz1,Lee Hing Wah1

Affiliation:

1. MEMS/NEMS-Micro Energy

Abstract

Inkjet printing is a promising technique for fabricating printed electronics. This technique acquires the utilization of conductive ink to form a fine and thin resolution conductive structure on a flexible substrate. The challenges are to design a stable conductive ink with a controlled properties to prevent nozzle clogging. Furthermore, a fine structure construction often demonstrated poor device performance due low mechanical durability. In this work, we have characterized morphology of the newly developed inkjet-printable nanosilver conductive ink (Mi-Ag) in our laboratory. The ink shows a stable colloidal ink zeta potential of-79.1 mV with nanoparticle size less than 100 nm properties has been tailored for compatibility with inkjet printing of conductive pattern on polyethylene terephthalate (PET) flexible substrate. It has been ascertained that the flexible electronic form factor affects the quality of the physical and electrical properties of printed pattern and the device performance. Hence, the bending test of the printed RFID patterns fabricated with different layer of thicknesses was investigated. Electrical properties of the samples were monitored by in-situ conductivity and resistivity measurement under cyclic bending testing. Pattern with thinnest layer of 1.31μm (1X) had the smallest electrical properties percentage drop (38.4%) at 12,000 bending cycles due to the fact that in thick layer, the interparticle network started to change during bending and became weaker due to the large amount of the particles in the dense printed layer. In contrast, printed device exhibited minimal increase in resistivity. Consequently the particle gap increased which allowed the movement of electrons, leading to the increased of electrical resistance. The device endurance characteristic is crucial to satisfy future design requirement of flexible electronic applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3