Modeling of the Pore Shape Effect on the Effective Young's Modulus of Lotus-Type Porous Materials by a Numerical Homogenization Technique

Author:

Bourih Abdellah1,Bourih Kaouther1,Kaddouri Wahid1,Masmoudi Mohamed1,Madani Salah1

Affiliation:

1. University of Batna 2

Abstract

Lotus-type porous materials (LTPMs) are considered as a new category of engineering materials. They are porous materials characterized by long, straight, unidirectional cylindrical pores, and are obtained via unidirectional solidification from a melt under hydrogen and argon atmospheres. The anisotropic pore morphology of lotus-type materials results in the anisotropy of their mechanical and physical properties. This study aims at investigating the effect of cross-sectional pore shapes on the effective Young's modulus (EYM) of LTPMs. The representative volume element-based finite element homogenization method was used to compute the effective bulk and shear moduli. Subsequently, the EYM was deduced from the effective bulk and shear moduli. The numerical results of the circular pores were validated by comparing them with experimental results. Because the results indicated that the EYM is extremely sensitive to the variation in the pore shapes, a formula for estimating the EYM of LTPMs by considering the pore shapes was developed and validated.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3