A Short-Term Power Load Forecasting Method Based on BP Neural Network

Author:

Li Ling Juan1,Huang Wen1

Affiliation:

1. Nanjing University of Posts and Telecommunications

Abstract

Short-term power load forecasting is very important for the electric power market, and the forecasting method should have high accuracy and high speed. A three-layer BP neural network has the ability to approximate any N-dimensional continuous function with arbitrary precision. In this paper, a short-term power load forecasting method based on BP neural network is proposed. This method uses the three-layer neural network with single hidden layer as forecast model. In order to improve the training speed of BP neural network and the forecasting efficiency, this method firstly reduces the factors which affect load forecasting by using rough set theory, then takes the reduced data as input variables of the BP neural network model, and gets the forecast value by using back-propagation algorithm. The forecasting results with real data show that the proposed method has high accuracy and low complexity in short-term power load forecasting.

Publisher

Trans Tech Publications, Ltd.

Reference5 articles.

1. Z. Cui: Short-term Load Forecasting Based on fuzzy Neural Network (In Chinese), Beijing, North China Electric Power University, (2007).

2. Z. Wei: Gansu Science and Technology (In Chinese), Vol. 25, no. 17 (2009), p.88–90.

3. W. Chen: Warehouse and Data Mining (In Chinese). Beijing: Posts and Telecom Press (2004).

4. X. Liu, Y. Wu and B. Cui: Power System Protection and Control (In Chinese), Vol. 38, no. 5 (2010), pp.25-29.

5. K.N. Vladimirovich: Introduction to the Theory of Random Processes, Providence, R.I. American Mathematical Society (2002).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3