Characteristics of Post-Nitridation Rapid-Thermal Annealed Gate Oxide Grown on 4H-SiC

Author:

Cheong K.Y.1,Bahng Wook2,Kim Nam Kyun2

Affiliation:

1. Griffith University

2. Korea Electrotechnology Research Institute (KERI)

Abstract

In this paper, the electrical properties of pre- and post-rapid thermal annealed 4H SiC-based gate oxide grown in 10% nitrous oxide (N2O) and in dry oxygen have been investigated, compared, and reported for the first time. After treating the nitrided gate oxide in rapid thermal annealing (RTA), oxide breakdown characteristic has been improved significantly. This improvement has been attributed to the reduction of SiC–SiO2 interface-trap density and the generation of positive oxide charge, acting as an electron-trapping center. However, deleterious effects have been observed in non-nitrided oxide after subjected to the same RTA treatment. The differences in oxide-breakdown strength of these oxides have been explained and modeled.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3