Study on Tool Wear In-Process Estimation for Ball End Mill Using Rotation Control Air Turbine Spindle

Author:

Okamoto Yusuke1,Yazawa Takanori1,Kato Tomonori2,Nishida Kazuya2,Moriyama Shinya1,Maeda Yukio3,Otsubo Tatsuki4

Affiliation:

1. Nagasaki University

2. Fukuoka Institute of Technology

3. Toyama Prefectural University

4. Salesian Polytechnic

Abstract

This paper introduces a method for in-process tool wear estimation of an air turbine spindle, which is equipped with a rotation control system for ultra-precision milling. Previous investigations revealed that the pressure of the compressed air for supply that is used to control the rotational speed and tool wear at the time when steady wear occurs, maintains a linear relationship when processing SKD61 steel. In addition, the extent to which the supply pressure changed was reduced after chipping occurred. Therefore, the possibility exists that the tool wear can be estimated by obtaining the supply pressure during processing. The purpose of this paper is to propose the evaluation of an in-process tool wear estimation method, and to evaluate its validity. An estimation method is necessary as this would allow the amount of tool wear to be estimated and abnormal wear of occurrence to be detected. Because of the linear relationship between the air pressure and the amount of tool wear, the latter can be estimated by plotting the approximately linear relationship of the tool wear as a function of the air pressure. The proposed estimation method for processing the results obtained for SKD61, is capable of estimating the relative error of the measured value within 0.2 against the estimated value at the time. Furthermore, the occurrence of abnormal wear is determined from the amount of change in the supply pressure. Thus, SKD11 steel was processed for the proposed estimation method to verify whether it is valid for cutting high hardness steel. As a result, for SKD11 the estimation method produced estimation results similar to those obtained for SKD61. Therefore, the suggested estimation method is likely to be effective for high-hardness steel cutting.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Breakage Detection Based on the Breakage Mechanism of Small-Diameter Drills;Advances in Science and Technology;2024-02-07

2. A Physics-Assisted Online Learning Method for Tool Wear Prediction;IEEE Transactions on Instrumentation and Measurement;2023

3. 生産高度化に寄与する研究室を目指して;Journal of the Japan Society for Precision Engineering;2022-11-05

4. Research on aerodynamic characteristics of two-stage axial micro air turbine spindle for small parts machining;Advances in Mechanical Engineering;2020-12

5. Time-varying analytical model of ball-end milling tool wear in surface milling;The International Journal of Advanced Manufacturing Technology;2020-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3