Investigation of the Microwave Absorption Properties of Fe Based Nanocomposites

Author:

Otmane Fadhéla1,Triaa Salim2,Hamlati Zineb1,Boumagouda Ridha1,Kara Farid1

Affiliation:

1. USDB

2. Université des Sciences et de la Technologie Houari Boumediène (USTHB)

Abstract

The objective of this work was to provide information about the behaviour of Fe-based nanocomposites when exposed to microwaves. It is about rectangular bulk samples of epoxy resin reinforced by nanocrystalline Fe powders and shaped in accordance to the internal section of the R100 metallic waveguide (8.2 to 12.4 GHz) at a fixed thickness of 7 mm. The nanocrystalline Fe powders were obtained by high-energy mechanical milling process using a planetary Retsch PM 400-ball mill. The milling speed was fixed at 200 rpm for three durations and the milling process were performed under Argon atmosphere. The bulk nanocomposites were obtained by dispersion of 30% vol. of the nanocrystalline Fe powders in the resin matrix. Electromagnetic parameters as complex relative dielectric permittivity and magnetic permeability, electric and magnetic loss tangent and reflection loss were calculated using reordered S parameters. The scattering parameters were characterized using a measure cell made off two metallic R100 wave-guides associated to an Agilent 8719 network analyser according to the reflection-transmission technique. The obtained spectra inform on the new electromagnetic properties as well as the absorption characteristic acquired by the bulk nanocomposites due to the presence of the nanocrystalline Fe powders.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3