Affiliation:
1. USDB, BP270 Route de Soumaa
2. Université des Sciences et de la Technologie Houari Boumediène (USTHB)
3. EMP Bordj El Bahri
Abstract
This study reports on the elaboration and characterization of bulk nanocomposites samples obtained by dispersion of metallic powders at the nanoscale as reinforcements in a polymer matrix. Elemental Fe powders were successfully nanostructured via high-energy ball milling. Structural characterization of the produced powders was conducted using X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). The Halder-Wagner approach was adopted to determine the powder’s average grain size, internal strain, lattice parameters and the mixing factors. Structural parameters evolution and morphological changes according to milling progression are discussed. Bulk nanocomposites samples were shaped in a home moulder by dispersion of coarse Fe and nanostructured Fe powders in a continuous matrix of commercial epoxy resin. The obtained bulk samples match the metallic X-band wave-guide WR-90 dimensions used for electromagnetic characterization. The two-port Sij scattering parameters were measured via an Agilent 8791 ES network analyzer. The measured scattering parameters served to calculate the loss factor of samples and to extract the dielectric permittivity via the Nicholson-Ross-Weir conversion. Spectra evolution of the scattering parameters, the loss factor and the dielectric constant for epoxy resin with coarse Fe and nanostructured Fe reinforcements are commented.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献