Characterization of SiC Crystals by Using Deep UV Excitation Raman Spectroscopy

Author:

Nakashima Shinichi1,Mitani Takeshi2

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST)

2. RandD Partnership for Future Power Electronics Technology (FUPET)

Abstract

Raman spectroscopy using deep UV (DUV) light excitation has been applied to characterizing process-induced defects in surface layers in SiC. Raman spectra of P+-ion implanted and post annealed SiC have been measured as a function of dose level and annealing temperature. The recovery of the crystallinity and electrical activity have been evaluated. Precipitation of excess phosphorus was found in heavily doped specimens. High dose implanted and post annealed samples show uneven distribution of residual defects, which is demonstrated by mapping of Raman bandwidth. Damage in 4H-SiC surfaces, which were mechanically polished with various sizes of abrasives, has been evaluated from DUV micro-Raman measurements. The Raman analysis demonstrates that bandwidth and peak frequency can be used as monitors of the polish–induced damage. It is found that localized defects reducing free carrier density remain even after polishing with small sized abrasives.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3