Lattice defects distribution of H+ implanted 4H-SiC investigated by deep-ultraviolet Raman spectroscopy

Author:

Wang Gengyu1ORCID,Luo Wenbo12ORCID,Zhu Dailei1,Wang Yuedong1,Shuai Yao12ORCID,Wu Chuangui12,Zhang Wanli12

Affiliation:

1. School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 1 , Chengdu 610054, People’s Republic of China

2. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China 2 , Chengdu 610054, People’s Republic of China

Abstract

The defects distribution of ion-implanted SiC is a key to understanding changes in the electronic, optical, and mechanical properties of SiC devices. However, accessing the defect distribution within the sample primarily relies on simulation, yet a number of factors remain unaccounted for in the simulation results, ultimately resulting in numerous inaccuracies. To address this issue, a defect distribution investigation method based on the combination of argon ion etching and deep-ultraviolet (DUV) Raman spectroscopy has been established. The defects at different depths were exposed to the surface by etching, and the crystal quality of the surface layer was assessed using Raman spectra with a 266 nm DUV laser. The spectra for the H+ implanted 4H-SiC showed that the full width at half maximum of the transverse optical mode at 781 cm−1 and the longitudinal optical mode at 965 cm−1 exhibited an increasing and then decreasing trend, approximate to a Gaussian distribution. These results were confirmed with the transmission electron microscopy cross-sectional image and SRIM-2013 simulation. The establishment of this analytical investigation method can be widely applied to other semiconductor materials, without the need for electrodes and sample contamination.

Funder

National Natural Science Foundation of China

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3