Abstract
We have used depth-resolved cathodoluminescence and Auger electron spectroscopies, DRCLS and AES, respectively, to probe the electronic structure and the composition of Ti/Al ohmic contacts to p-type SiC on a nanometer scale. A continuous Ti-Si-C compound layer was observed using the Auger depth profile. No interfacial Al segregation was found. The secondary electron threshold technique showed a continuous decrease in work function from the p-type SiC to the Ti-Si-C compound layer. Our results support an ohmic contact mechanism by an intermediate semiconductor layer which reduces the otherwise large interfacial Schottky barrier height. DRCLS revealed a ~2.78 eV sub-band gap transition enhanced by interfacial reaction in the near-interface SiC, suggesting the formation of additional C or Si vacancies.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献