Damage-Free Planarization of 4H-SiC (0001) by Catalyst-Referred Etching

Author:

Hara Hideyuki1,Sano Yasuhisa1,Mimura Hidekazu1,Arima Kenta1,Kubota Akihisa2,Yagi Keita3,Murata Junji1,Yamauchi Kazuto1

Affiliation:

1. Osaka University

2. Kumamoto University

3. Ebara Research Corporation

Abstract

We report the damage-free planarization of 4H-SiC (0001) wafers using a new planarization technique we named CAtalyst-Referred Etching (CARE). The CARE setup equipped with a polishing pad made of a catalyst is almost the same as a lapping setup. Since the catalyst generates reactive species that activate only when they are next to the catalyst surface, SiC can be chemically removed in contact with the catalyst surface with a pressure noticeably lower than that in a conventional polishing process. The processed surfaces were observed by optical interferometry and AFM. These observations presented a marked reduction in surface roughness. A step-terrace structure was observed with a step height of approximately 3み, corresponding to one-bilayer thickness of Si and C, in the AFM images. To estimate the crystallographic properties of the CARE-processed surface, the surfaces were observed by cross-sectional TEM. The TEM images showed that a more crystallographically well-ordered surface was realized in comparison with the conventional CMP-processed surface.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3