Synthesis of Titania Nanoparticles via Spark Discharge Method Using Air as a Carrier

Author:

Oh Hyun Cheol1,Ji Jun Ho2,Jung Jae Hee1,Kim Sang Soo1

Affiliation:

1. Korea Advanced Institute of Science and Technology (KAIST)

2. Samsung Electronics Co. Ltd.

Abstract

A pulsed spark-discharge aerosol generator using air as a carrier gas was successfully applied to the titania nanoparticle production. The titanium vapor evaporated by spark discharge was subsequently supersaturated and condensed to titania nanoparticles by nucleation and condensation. The size and concentration of the particles can be controlled easily using air as a carrier gas by altering the repetition frequency, capacitance, gap distance, and flow rate of the spark-discharge system. TEM observation shows that the generated particles were aggregates, which primary particle sizes are a few nanometers. The element composition of the nanoparticles was titanium and the crystal phase was amorphous. XPS analysis shows that oxidation state of generated particles corresponded to TiO2. These XPS data indicates that some fraction of the evaporated titanium vapor could be oxidized in an air atmosphere by the oxidation with oxygen. However, enough time for crystallization was lacked because of raid cooling.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3