Abstract
An atomistic study of radiation-induced amorphization in the NiTi intermetallic compound was performed by using in-situ high-resolution high-voltage electron microscopy and molecular dynamics in conjunction with image simulations. Both theoretical and experimental results show that metastable nanometer-size inherent atomic clusters form and disappear during irradiation, so that a spatiotemporal fluctuation under amorphization is induced. The random formation and annihilation of such inherent nanoclusters are believed to be responsible for these fluctuations, which appear to be related to transitions between the ideal glass state and metastable, unrelaxed states in an energy-dissipative system under irradiation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献