4H-SiC Epitaxial Growth on Carbon-Face Substrates with Reduced Surface Roughness

Author:

Aigo Takashi1,Sawamura M.1,Fujimoto Tatsuo1,Katsuno Masakazu1,Yashiro Hirokatsu1,Tsuge Hiroshi1,Nakabayashi Masashi1,Hoshino Taizo1,Ohtani Noboru2

Affiliation:

1. Nippon Steel Corporation

2. Kwansei Gakuin University

Abstract

4H-SiC epitaxial layers on Carbon-face (C-face) substrates were grown by a low-pressure hot-wall type chemical vapor deposition system. The C-face substrates were prepared by fine mechanical polishing using diamond abrasives with the grit size of 0.25 %m and in-situ HCl etching at 1400°C, which produced surface roughness of 0.27 nm. The use of the smooth substrates made it possible to decrease the substrate temperature and specular surface morphologies were realized at C/Si ratios of 1.5 or less both for a substrate temperature of 1550°C and for that of 1500°C. Surface roughness of 0.26 nm and the residual donor concentration of 6.7×1014 cm-3 were obtained for a C-face epitaxial layer grown at a C/Si ratio of 1.5 and at a substrate temperature of 1550°C. Schottky barrier diodes were fabricated on a non-doped C-face epitaxial layer grown at 1500°C and it was verified that a high quality metal-semiconductor interface was formed on the epitaxial layer.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3