Microstructure of SiC/Cu Interface by Pulsed Electric-Current Bonding

Author:

Nishimoto Akio1,Akamatsu Katsuya1,Ikeuchi Kenji2

Affiliation:

1. Kansai University

2. Osaka University

Abstract

Pulsed electric-current sintering (PECS) was applied to the bonding of SiC (pressureless-sintered silicon carbide) to Cu (oxygen-free copper) using a mixture of Cu and Ti powders as an intermediate layer. The influences of the intermediate powders on the bond strength of the joint were investigated by observation of the microstructure. The bonding was carried out at carbon-die temperatures from 973 to 1173 K at a bonding pressure of 10 MPa for 3.6 ks. The application of intermediate layers of 100% Ti, 95% Ti + 5% Cu, and 5% Ti + 95% Cu remarkably improved the bond strength as compared with direct bonding without an intermediate powder. SEM observations of the joint with the intermediate powders revealed that a Cu solid-solution layer, a TiC layer, and a Ti5Si3 layer had covered most of the interface, similar to those observed in the friction-bonded and pulsed-electric current bonded joints of SiC to Cu in which the application of a Ti foil as an intermediate layer remarkably improved the bond strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3