Two-Dimensional Mapping of Crack-Face Bridging Stresses in Alumina Using Synchrotron Micro X-Ray Beam

Author:

Sakaida Yoshihisa1,Mori Shotaro1

Affiliation:

1. Shizuoka University

Abstract

In order to understand an effect of crack-face bridging stress field of alumina ceramics on its fracture toughness, local residual stress distribution due to crack face grain bridging behind the crack tip was measured using synchrotron x-ray beam at SPring-8 in Japan. The SEPB (Single Edge Precracked Beam) specimens of two types of polycrystalline Al2O3 were used for stress measurement; one was pressureless sintered Al2O3 (AL1) and the other was hot-press sintered Al2O3 (TAL). Pop-in precracks were introduced by bridge-indentation method. Before residual stress mapping, the SEPB specimens were unloaded from a constant applied load to zero using four points bending device. Two-dimensional residual stress field was mapped by scanning a micro X-ray beam of 50×50 μm2 with the scanning interval of 12.5 or 25 μm. As a result, in the case of AL1 having conventional fracture toughness and strength, the compressive residual stresses due to crack-face bridging were only observed in the close vicinity of crack tip. On the other hand, in the case of TAL having higher fracture toughness and strength, the compressive residual stresses were widely distributed behind the crack tip. Larger compressive stress was locally generated along the crack path at interlocked grains. The compressive bridging stresses distributed behind the crack tip were found to enlarge with a decrease in the crack opening displacement against a constant applied stress intensity factor, Kapp. It was concluded that the difference in residual stress fields behind crack tip was attributed to the differences in its microstructure and microcrack propagation behavior, such as deflections and interlocked grains.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3