Abstract
Three types of polycrystalline alumina, one pressureless and two hot press sintered Al2O3, were used to examine the effects of the characteristics of microstructure and crack face bridging on fracture toughness. The crack opening displacements and microstructures along the pop-in crack of single edge precracked beam (SEPB) specimens were observed in situ at a constant applied stress intensity factor by scanning electron microscopy (SEM). The bridging stress distribution could be determined from the measured crack opening displacement by three-dimensional finite element analysis, and then the stress intensity factor and stress shielding effect at the crack tip could also be determined. Intergranular microcracks of toughened Al2O3 were deflected by a complicated microstructure, and crack closure due to bridging grains was observed near the crack tip. Bridging stress of Al2O3 was compressive perpendicular to the crack face and was distributed behind the crack tip. The maximum bridging stress of two hot press sintered Al2O3 was about twice as large as that of pressureless sintered Al2O3. The fracture toughness of hot press sintered Al2O3 was, therefore, higher than that of pressureless sintered Al2O3, because the total amount of bridging stress and stress shielding effect increased with increasing magnitude of microcrack deflection and the number of interlocking grains.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference10 articles.
1. Ed. by Fine Ceramics Research Association, Synergy Ceramics II, (2004), p.87, Gihodo shuppan, Japan.
2. J. J. Kruzic, R. M. Cannon and R. O. Ritchie: J. Am. Ceram. Soc. Vol. 87 (2004), p.93.
3. F. Meschke, O. Raddatz, A. Kolleck and G. A. Schneider: J. Am. Ceram. Soc. Vol. 83 (2000), p.353.
4. G. Pezzotti, N. Muraki, N. Maeda, K. Satou and T. Nishida: J. Am. Ceram. Soc. Vol. 82 (1999), p.1249.
5. Y. Wang, U. Anandakumar and R. N. Singh: J. Am. Ceram. Soc. Vol. 83 (2000), p.1207.