Study on the Key Parameters in Etching of Fused Silica Using Atmospheric Inductively Coupled Plasma

Author:

Xin Qiang1,Wang Bo1,Jin Hui Liang1,Li Na1,Li Duo1,Li Guo1

Affiliation:

1. Harbin Institute of Technology

Abstract

Atmospheric Pressure Plasma Processing (APPP) of silicon-based optics and wafers is a form of chemical etching technology developed in recent years. The material removal rate is comparable to those of conventional mechanical processing methods in precision fabrication. Moreover, there is no mechanical contact or physical loading on the substrate surface, hence no surface or sub-surface damages are induced. Inductively coupled plasma is one realization of APPP. In this work, inductively coupled plasma torch is used to generate plasma and excite etchant particles at atmospheric pressure. These active particles then diffused to the workpiece surface, react with its atoms to form volatile products. The activity and number of particles in plasma are influenced by processing parameters such as input power, distance between nozzle and substrate surface, flow rate of plasma gas argon and precursor gas CF4. These factors have various impacts on material removal rate. Processing experiments are conducted on fused silica to investigate the parameters’ influences on material removal rate. The basic interaction between substrate surface and plasma is illustrated, then the relationships between processing parameters and material removal rate are analyzed. From the experiments some trends are derived. Material removal rate rises with the increase of power and flow rate of CF4, whereas decreases with the increase of processing distance, etc. The etching footprint is proved to be near Gaussian-shaped and believed to have high potential for deterministic surface processing.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3