Fatigue Behavior of Riblet Structured High Strength Aluminum Alloy Thin Sheets at Very High Cycle Numbers

Author:

Stille Sebastian1,Beck Tilmann2,Singheiser Lorenz1

Affiliation:

1. Forschungszentrum Jülich GmbH

2. TU Kaiserslautern

Abstract

The VHCF behavior of age hardened 2024 and 7075 aluminum sheets was studied. The experiments were performed at frequencies of ≈ 20 kHz with fully reversed axial loading (R = -1). Special focus was put on the influence of AA 1050 claddings and riblet-like surface structures, which are used in aerospace applications to reduce aerodynamic drag. The fatigue life and fatigue limit of the AA 2024 bare material are – compared to the non-structured case – significantly reduced by the stress concentrations induced by the riblet structure. However, the fatigue behavior of the clad AA 2024 material is less sensitive to the surface structure. In this case, we obtained a sharp transition from HCF failure up to 5x106 cycles to run-outs at ≥ 2x109 cycles. This threshold value for failure differs with cladding thickness as well as with riblet geometry. We attribute this to the modified stress distribution near the interface (cladding/substrate) as well as to a locally reduced thickness of the cladding in the riblet valleys. Fatigue cracks are – even in the case of run-outs – always initiated at the surface of the clad layer and grow easily to the substrate. Samples only fail, if the threshold for further crack growth into the substrate is exceeded. Both Alclad 2024 and 7075 show the same failure mechanism.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3