Experiments on drag-reducing surfaces and their optimization with an adjustable geometry

Author:

BECHERT D. W.,BRUSE M.,HAGE W.,VAN DER HOEVEN J. G. T.,HOPPE G.

Abstract

Previous research has established that surfaces with tiny ribs (riblets) aligned in the streamwise direction can reduce the turbulent wall-shear stress below that of a smooth surface. Typical skin-friction reductions have been found to be about 5%. The results of the present investigation, however, demonstrate a considerable improvement over this value. This improvement is achieved by a systematic experimental optimization which has been guided by theoretical concepts.A key feature of our experiments is the utilization of an oil channel. Previous experiments in wind tunnels had to contend with very small riblet dimensions which typically had a lateral rib spacing of about 0.5 mm or less. By contrast, in our oil channel, the ribs can have a lateral spacing of between about 2 and 10 mm. This increased size of the surface structures enables test surfaces to be manufactured with conventional mechanical methods, and it also enables us to build test surfaces with adjustable geometry. In addition, the Berlin oil channel has a novel shear stress balance with an unprecedented accuracy of ±0.3%. This latter feature is a prerequisite for a systematic experimental optimization.In the present investigation, surfaces with longitudinal ribs and additional slits are studied. The experiments cover a fairly large range of parameters so that the drag reduction potential of a surface with ribs and/or slits is worked out conclusively. A large parameter range is made possible because of the adjustability of the surfaces as well as the automatic operation of the oil channel. In particular, the following tests were run:(i) Shear stress measurements with conventional riblet configurations, i.e. with triangular and semi-circular grooves, have been carried out. These measurements were necessary in order to establish the connection between our oil channel data and previous data from wind tunnels. As was previously established, we found a drag reduction of about 5%.(ii) An adjustable surface with longitudinal blade ribs and with slits was built and tested. Both groove depth and slit width could be varied separately and continuously during the experiment. It turned out, that slits in the surface did not contribute to the drag reduction. Nevertheless, these investigations show how perforated surfaces (e.g. for boundary-layer control) can be designed for minimal parasitic drag. On the other hand, with closed slits, an optimal groove depth for the rib surface could be determined, i.e. half of the lateral rib spacing. For this configuration, we found an 8.7% skin-friction reduction. By carefully eliminating deleterious effects (caused by little gaps, etc.), the skin-friction reduction could be improved to a record value of 9.9%.(iii) A quantitative comparison between theory and experiment was carried out. The theory is based on the assumption that riblets impede the fluctuating turbulent crossflow near the wall. In this way, momentum transfer and shear stress are reduced. The simplified theoretical model proposed by Luchini (1992) is supported by the present experiments.(iv) For technological applications of riblets, e.g. on long-range commercial aircraft, the above thin-blade ribs are not practical. Therefore, we have devised a surface that combines a significantly improved performance (8.2 %) with a geometry which exhibits better durability and enables previously developed manufacturing methods for plastic riblet film production to be used. Our riblet geometry exhibits trapezoidal grooves with wedge-like ribs. The flat floor of the trapezoidal grooves permits an undistorted visibility through the transparent riblet film which is essential for crack inspection on aircraft.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 711 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3