A New Approach on Stabilization Control of an Inverted Pendulum, Using PID Controller

Author:

Razzaghi Kaveh1,Jalali Ali Akbar1

Affiliation:

1. Iran University of Science and Technology (IUST)

Abstract

Inverted Pendulum is a standard problem in control systems and is appropriate for depicting linear control principles. In this system there is an inverted pendulum connected to a cart that moves along a horizontal track with the help of a motor. We can determine the cart’s position and velocity from the motor and the rail track limits the cart’s movement in a bidirectional path. The pendulum’s angle of deviation and the position of the cart are determined by two sensors mounted on the system. Essential measurements and motor control signals are generated by a medium control board linking the computer and the system. Analysis of the results and yielding the control commands are done with the help of a MATLAB program. This is indeed a single input- dual output system because we must be able to control two parameters (pendulum’s angle and cart’s position) with just one control signal to the motor. Since the PID (Proportional Integral Derivative) controller is usually proper for SISO (Single Input Single Output) systems, we are eager to propose a procedure to control one of these parameters underneath the other. In this paper two tactics are described: 1. controlling the cart’s position beneath the pendulum’s angle, and 2. controlling the pendulum’s angle beneath the cart’s position. Regarding the results, one method is proven to be superior. We also mention some practical considerations in this paper.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cascade PID-LQR Control Strategy for Nonlinear Flexible Inverted Pendulum System;Robotica & Management;2024-08-19

2. Dual Mode Control of an Inverted Pendulum: Design, Analysis and Experimental Evaluation;Advances in Science, Technology and Engineering Systems Journal;2023-12

3. Fuzzy Cooperative Control for the Stabilization of the Rotating Inverted Pendulum System;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-05-20

4. Ters Sarkaç Sistemi İçin LQR Kontrolcü Tasarımında Genetik Algoritma Optimizasyonu;European Journal of Science and Technology;2020-11-07

5. Control of Inverted Pendulum Using Fractional Order PID Controllers Based on Particle Swarm Optimization;Journal of Intelligent Systems with Applications;2018-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3