A Study of Compatibilization Effect on Physical Properties of Poly (Butylene Succinate) and High Density Polyethylene Blend

Author:

Aontee Ajcharaporn1,Sutapun Wimonlak1

Affiliation:

1. Suranaree University of Technology

Abstract

The aim of this research is to improve compatibility of PBS/HDPE blend using HDPE-g-MAH as a compatibilizer. The effect of HDPE-g-MAH content on mechanical and thermal properties, and degree of crystallinity of PBS/HDPE/HDPE-g-MAH blend was investigated. The blends were prepared at PBS/HDPE weight ratio of 30/70 and HDPE-g-MAH was used at a content of 2, 4, 6 and 8 part per hundred of PBS and HDPE. The results showed that yield strength and stress at break of PBS/HDPE/HDPE-g-MAH blends insignificantly increased with adding HDPE-g-MAH more than 2 phr. In addition, addition of HDPE-g-MAH to the binary blends led to an increase of elongation at break while Young’s modulus of blends exhibited an insignificant change. The addition of HDPE-g-MAH into PBS/HDPE blend did not affect both flexural modulus and flexural strength. In addition, unnotched impact strength of the blends greatly increased with increasing HDPE-g-MAH content and PBS/HDPE blend containing 8 phr of HDPE-g-MAH were not fractured within the instrument limit. For thermal properties, the presence of HDPE-g-MAH did not affect degradation temperature of PBS domain and HDPE matrix. HDPE-g-MAH of 8 phr markedly influenced the degree of crystallinity of the PBS and HDPE.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference17 articles.

1. S. Evans, in: GlobalData 2011, European plastics industry, (2012).

2. In: Renewable Energy Annual 2007, Energy Information Administration, Washington, DC, 2007, 2007, p.14.

3. L. Liu, J. Yu, L. Cheng, W. Qu, Composites Part A, 40 (2009) 669-674.

4. S. S. Ray, J. Bandyopadhyay, M. Bousmina, Macromol. Mater. Eng., 292 (2007) 729-747.

5. S. Mbarek, M. Jaziri, Y. Chalamet, C. Carrot, J. Appl. Polym. Sci., 117 (2010) 1683-1694.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3