Modifications of Phase Morphology, Physical Properties, and Burning Anti-Dripping Performance of Compatibilized Poly(butylene succinate)/High-Density Polyethylene Blend by Adding Nanofillers

Author:

Behera Kartik1,Tsai Chien-Hsing1,Chang Yen-Hsiang2,Chiu Fang-Chyou12

Affiliation:

1. Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan

2. Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan

Abstract

A twin-screw extruder was used to fabricate poly(butylene succinate) (PBS)/high-density polyethylene (HDPE) blends (7:3 weight ratio) and blend-based nanocomposites. Carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and organoclays (15A and 30B) served as the nanofiller, while maleated HDPE (PEgMA) acted as an efficient compatibilizer for the blend. In the composites, individual nanofillers were mostly localized in HDPE domains, but some fillers were also observed at PBS–HDPE interfaces. The sea–island morphology of the compatibilized blend evolved into a pseudo-co-continuous morphology in the composites. Differential scanning calorimetry results confirmed that PEgMA with HDPE evidently accelerated the crystallization of PBS in the blend. The possible nucleation effect of added fillers on PBS crystallization was obscured by the formation of quasi-connected HDPE domains, causing fewer PBS nucleation sites. The presence of nanofillers improved the thermal stability and burning anti-dripping behavior of the parent blend. The anti-dripping efficiency of added fillers followed the sequence CNT > 15A > 30B > GNP. The rigidity of the blend was increased after the formation of nanocomposites. In particular, adding GNP resulted in 19% and 31% increases in the Young’s modulus and flexural modulus, respectively. The development of a pseudo-network structure in the composites was confirmed by measurement of rheological properties. The electrical resistivity of the blend was reduced by more than six orders of magnitude at 3 phr CNT loading, demonstrating the achievement of double percolation morphology.

Funder

Chang Gung Memorial Hospital

National Science and Technology Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3