Microwave Response of Gd-Doped YIG Based Y-Junction Stripline Circulator for Use at Very High Frequencies

Author:

Subawi Handoko1,Soepriyanto Syoni1

Affiliation:

1. Institut Teknologi Bandung

Abstract

This study aimed to evaluate Fe2O3 based magnetic ferrite performance and its composition using Rare Earth Oxide (REO) of Yttrium as dopant and Gadolinium as co-dopant elements. Lot of specimens were prepared through dry pressing technique, and sintered into the high temperature tube furnace up to 1450°C. Sintering duration of 5 hours results the best magnetic properties. The existence of Gadolinium element tends to improve magnetic properties of magnetic ferrite Gd-doped YIG structure. Remacomp brand Magnet-Physik was used to determine the characteristics of soft magnetic materials in the measurement frequency range of 10 Hz to 70 kHz. Microwave response was measured using the Vector Network Analysis to provide insertion loss and isolation data. The obtained insertion loss of Gd0.75Y2.25Fe5O12 is 0.4270 dB (at 3.7 GHz) and 0.2455 dB (at 4.2 GHz), while the isolation value is 11.3840 dB (at 3.7 GHz) and 17.8250 dB (at 4.2 GHz). The further experiment will be carried out to improve the microwave response and better magnetic properties of Gd-doped YIG structure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unlocking the Potential of Garnet Ferrites: A Comprehensive Review on Properties, Preparation Methods, and Applications;Materials Performance and Characterization;2024-01-30

2. Effect of physical parameters on the formation of Yttrium iron garnet by dry pressing method for microwave ferrite circulator;PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3