Development of a 25kN In Situ Load Stage Combining X-Ray Computed Tomography and Acoustic Emission Measurement

Author:

Thum Florian1,Potstada Philipp1,Sause Markus G.R.1

Affiliation:

1. University of Augsburg

Abstract

Combination of material testing methods such as X-ray computed tomography with in-situ load stages allows for detailed analysis of damage formation and progression in fibre-reinforced composites. X-ray computed tomography is highly suited to volumetrically analyse the damage evolution induced by the load stage for tensile testing after subsequent load increments. Simultaneous acoustic emission monitoring allows identifying the occurrence of particular failure mechanisms and allows stopping the loading procedure for volumetric scanning. However, typical commercial designs focus on a broad range of materials and are not necessarily optimized for high load capacity at high voxel resolution or the possibility to attach acoustic emission sensors to the test sample. Accordingly, we designed a new load stage to fit larger samples up to 180 mm in length and 18 mm in width, which also allows two piezoelectric acoustic emission sensors to be directly applied on the sample. In order to test fibre reinforced laminate samples with a relevant cross-section, the support structure of the load stage is made of a carbon fibre reinforced polymer tube, which withstands a maximum load of 25 kN and still stays reasonably X-ray transparent. With an outer diameter of 27 mm, a computed tomography scan with a resolution down to 2.6 μm is still possible for these laminate cross-sections. This allows to study in detail how matrix and fibres behave under loads in laminates, which are comparable to specimen sizes by typical test standards. As example, we present results from glass fibre-reinforced epoxy samples with a [±45°]5 layup and carbon fibre-reinforced epoxy samples with a [0,90,90,0] layup.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3